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There is increasing interest in (Short Baseline)
Antineutrino Monitoring of Reactors

Containment
Reactor e _\.
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Basic science laid the foundation for this
monitoring technique

= Reines and Cowan, 1956: = Three decades of neutrino
First to detect antineutrinos using a oscillation studies have provided:
reactor source and a liquid scintillator A mature techroeloavbase

A quantitative understanding of
reactors as an antineutrino source
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Recent Re-evaluations of the
Reactor Antineutrino Flux

We have seen strong efforts to improve the conversion of ILL reference spectra to
antineutrino spectra: ~3% increase in flux

Two largely independent predictions agree:
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But, there are still considerable uncertainties related to some corrections:
- a high-precision spectral measurement might help
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The Reactor Antineutrino Anomaly

= Mention, et al, re-analyzed many previous short baseline reactor experiments, in
light of their new antineutrino flux prediction

= The result: new global “Reactor Antineutrino Anomaly”

Nobs/Npred = => 0.943 +/_ 0.023

arXiv:1101.2755v4
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p(measured)/p(predicted)

The Reactor Anomaly is consistent
with other hints at a sterile flavor
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The recent results have sparked a new

flurry of interest and activity
STERILE NEUTRINOS a1 1 CROSSROADS

September 25-28, 2011 - Blacksburg, VA - USA

Short-Baseline

Neutrino Workshﬂp
12-1dMay 2041 > fﬁ,’r

= Most sterile hints take the form of a deficit or excess relative to an
(uncertain) expectation

= Strong desire in community for definitive experiments based on
measurement of oscillation patterns

= Can anew short baseline reactor experiment help?
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At short baselines, a reactor is not a point
source

Baseline Detector AL/L
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Effect of Baseline and Baseline Distribution

Baseline (m)

_ ek e == N NN NN
O N A OO 00O O N A~ OO O
o IllIIllIIllIIllIlllIlllIlIlIlllMllIlll

(o]

{8in*(26) =0.165, Am” =24 eV?)

T 0

— 800

-eoo

400

200

Visible Energy (MeV)

= No previous experiment appears to have been optimized in this respect

= Experiments at appropriate small and large reactors would be complementary:
efficiently probe different Am2regions
measuring flux/spectra from different core compositions
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SCRAAM: The Southern California Reactor
Antineutrino Anomaly Monitor

= Qur proposal is to perform a relatively rapid and
inexpensive experimental measurement

—Direct sterile oscillation sensitivity via spectra distortion

—High statistics flux and spectrum measurement from a single Pressurized
Water Reactor (PWR)

 This requires access to location(s) with high antineutrino flux and
appropriate core-detector geometry
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The San Onofre Nuclear Generating Station:
Our (nonproliferation) laboratory for over a decade

Direct Observation of reactor fuel
burnup via antineutrino counting
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=  We have cultivated an exceptionally strong and trusting relationship with SONGS:
« A multitude of access requests have been readily granted since 1999
« Provide unescorted reactor access, deployment assistance, commercially sensitive
fueling data, introductions to other operators, .....
= We possess unparalleled operational experience in this industrial environment:

« Five detector deployments since 2003
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Tendon Galleries are Ideal Deployment
Locations

= High Flux: ~20%7 v/m?/s
= 130-180om to other reactor

= Gallery is annular — unfortunately no
possibility to vary baseline
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Tendon Gallery Access
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The SCRAAM Detector Concept

A relatively long/narrow geometry is needed: @1im x
2m length O S
= Tendon gallery is fairly narrow /
1.5 ton active mass
= ~g000 inverse beta interactions/day
= Conservative 40% efficiency gives detection rate of
~4000/day

Double ended optical readout and diffuse reflective
coating for good light collection and position
uniformity: expect to achieve 10% energy
resolution at 1MeV

Guide tubes for calibration
Aim for at least 4% absolute normalization

= e.g.include partial “gamma catcher” to
increase precision and efficiency

Component costs: ~$800k
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We have completed considerable R&D on

detectors of this scale

= Mostrecent: 3.6 ton liquid scintillator detector (BC-525, 0.12% Gd)
= For deployment at a CANDUG reactor in 2012
= Understand safety and requlatory requirements for reactor site

= Successful commissioning run just completed
= Validated mechanical design for double ended PMT readout
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Example Oscillation Patterns:

For SONGS core, spectral sensitivity remains at 24m
150 days, sin?(20) =0.165, Am?=0.15 eV?
1.5% bin-to-bin systematic, 8/1 Signal/Background

Visible Energy (MeV)
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Example Oscillation Patterns:

For SONGS core, spectral sensitivity remains at 24m
150 days, sin?(20) =0.165, Am?=0.60 eV?
1.5% bin-to-bin systematic, 8/1 Signal/Background

Visible Energy (MeV)

'Z - T T T T T T T
z F +, e, T 1
3 - - -.'-ln-u-l'-.. +H
=z 0.8 =
0.6 —
0.4 -
02|
0 » 1 1 1 'l 1 1 1
0 1 2 3 4 5 6 7 8

Visible Energy (MeV)

‘ Lawrence Livermore National Laboratory
LLNL-PRES-514073



Example Oscillation Patterns:

For SONGS core, spectral sensitivity remains at 24m
150 days, sin?(20) =0.165, Am?=1.2 eV?

1.5% bin-to-bin systematic, 8/1 Signal/Background
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Example Oscillation Patterns:

For SONGS core, spectral sensitivity remains at 24m
150 days, sin?(20) =0.165, Am?=2.4 eV?
1.5% bin-to-bin systematic, 8/1 Signal/Background
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Example Oscillation Patterns:

For SONGS core, spectral sensitivity remains at 24m
150 days, sin?(20) =0.165, Am?=4.8eV?
1.5% bin-to-bin systematic, 8/1 Signal/Background

Visible Energy (MeV)
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Exclusion Estimates: Shape

= 150days, 99% C.L.
= 1.5% Energy scale error, 8/1 Signal/Background
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Investigating possibility of complementary
compact core measurement

Advanced Test Reactor at Idaho National Lab
Unique "serpentine” 1.2m HEU core, ~a50MW,,
Convenient 60 day on, 30 day off cycle
Potential below grade deployment locations near core —

At 12m baseline, spread similar to that at SONGS
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Exclusion Estimates: Shape

= 99%C.L.; 150 days@ SONGS; 300 days @ ATR
= 1.5% Energy scale error, 8/1 Signal/Background
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Combined analysis of multiple baselines
would have broad sensitivity

= Key parameters would be relative energy scale and
normalization: O.Yasuda, arXiv:1107.4766
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SONGS Core evolution is well understood

= Again, through our long interaction with SONGS we have access to operator fueling
and reactor data
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= Unlike the thetai3 near detectors, the SCRAAM spectrum measurement would
effectively be from a single core

 Inthe absence of spectral distortion, this measurement could better constrain
prediction uncertainties
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Nominal Schedule

= SONGS outages are

Jan |Feb |Mar |Apr |May |Jun |Jul Aug |[(Sep |[Oct |[Nov |Dec

key; ~50 day

Unit 3
background Refusd
measurement: N———

Unit 2
Refuel

= Unit 2 Sept. 13
= Unit 3Sept 14

Given our recent Construction Testing  Deploy SONGS Operation

Unit 3
Refuel

experience, 15-18

onths from design | SONGS Analysis
en |0yment SONGS Operation Redeploy ATR Operation

ible | , |
SONGS Analysis ATR Analysis
ATR Operation

" ATR Analysis

ATR Operation Decommision Combined Analysis
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Effort and Budget

-

Post-doc

Engineer/
Technologist

Total FTE

Equipment

Approx.

Total Cost

0.5 FTE

0.5 FTE

0.66 FTE

1.66 FTE

$350K

$900K

0.5 FTE

0.5 FTE

0.33 FTE

1.33FTE

$440K

$900K

0.75 FTE

0.75 FTE

0.17 FTE

1.67 FTE

$500K

0.75 FTE

0.75 FTE

0.17 FTE

1.67 FTE

$500K

0.75 FTE

0.75 FTE

0.08 FTE

1.58 FTE

$500K
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Potential Collaborators

= John Learned, U. Hawaii
« Fabrication, software

= HANARO Group (South Korea)
« High flash-point Scintillator

t Lawrence Livermore National Laboratory
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Conclusions
= Short baseline reactor efforts have continued, attempting to
develop a new safequards technique

« The reactor access, reactor simulation, and detector design expertise from
the applied community can be exploited to probe the "RAA”

= Short baseline measurements at appropriate small (research) and
large (power) reactors would be complementary:

« Efficiently probe different Am2 regions and measuring spectra from different
core compositions

« SONGS appears optimal for a power reactor deployment
« ATR appears very promising as a research reactor deployment site
« Combined analysis of two deployments could have even better sensitivity

= SCRAAM would rapidly exclude a large fraction of the ~ 1eV?2
"RAA" allowed phase space, and have good discovery potential in
the “best-fit” region

w Lawrence Livermore National Laboratory
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Exclusion Estimates: Shape + Rate

= a5odays, 99% C.L.

= 4% Normalization, 1.5% Energy scale error, 8/1 Signal/Background
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SONGS Backgrounds

Our SONGSa detector had S/B of ~4/1

Background was primarily:

« Fast neutron recoil followed by capture
« Multiple neutron capture

There is reason to believe that we can do
considerably better with SCRAAM:

« SONGS1 had only 95% muon veto and
“non-hermetic” shielding

« Improved neutron capture efficiency
and analysis will allow rejection many
more multiple neutrons
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Detection Rate, Detector Systematics

= Assuming 40% efficiency, expect detection rate of about

4000 v/day

= Precision on absolute efficiency of ~ 4% would require
considerable effort, but appears feasible

= Extensive source calibrations would be required

Systematic Target Value Mitigation
No. of target protons 1.5% Weighting, solvent selection
Neutron efficiency 1.5% Gamma catcher, calibration
Positron efficiency 1% calibration, ideally =~ 500 keV threshold
Core-Detector distance 0.5% | Through document review, possible survey
Deadtime 0.25% precise measurement, tracking
Detector Total (Flux Measurement) 2.4%
Reactor Systematics 2.7%
Total on JVObS / 1\"vpred 36%
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A compact core effort: Nucifer
(see also Y.D. Kim poster)

AAP
Nucifer @ Osiris ()
Nicifer Reactor
= 70 MW reactor

= Nucifer 7 m from the core
= 15 mwe overburden

650 v/day expected
Assuming 50% det efficiency

Electronic bay

= Reactor Background:
- Additional 10 cm lead shielding needed due to reactor inducea y rays

= Based on simulation and on site measurements:

- S/Baccidentals =1
-S/B = 0.25 before PSD cut, ~2.5 expected after PSD selection.

correlated —
Reactor OFF 33% of the time, will allow final background subtraction.

L L

D. Lhuillier AAP2011 - Vienna C)ubof:ch Ce:] 3



, AAP
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Other Proposed Efforts ($$$)

= PBqg neutrino sources into KamLAND, SNO+, etc

= Multi-Detector Accelerator experiments
« BOONE
« 2XLArTPC @ CERN PS
« 2XLArTPC @ FermiLAB

= (PLANCK will provide much tighter cosmological
bounds in ~2014-15)
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